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It is well known that the imposition of a static magnetic field tends to suppress motion 
in an electrically conducting liquid. Here we look at the magnetic damping of liquid- 
metal flows where the Reynolds number is large and the magnetic Reynolds number 
is small. The magnetic field is taken as uniform and the fluid is either infinite in extent 
or else bounded by an electrically insulating surface S.  Under these conditions, we find 
that three general principles govern the flow. First, the Lorentz force destroys kinetic 
energy but does not alter the net linear momentum of the fluid, nor does it change the 
component of angular momentum parallel to B. In certain flows, this implies that 
momentum, linear or angular, is conserved. Second, the Lorentz force guides the flow 
in such a way that the global Joule dissipation, D, decreases, and this decline in D is 
even more rapid than the corresponding fall in global kinetic energy, E. (Note that 
both D and E are quadratic in u.) Third, this decline in relative dissipation, DIE, is 
essential to conserving momentum, and is achieved by propagating linear or angular 
momentum out along the magnetic field lines. In fact, this spreading of momentum 
along the B-lines is a diffusive process, familiar in the context of MHD turbulence. We 
illustrate these three principles with the aid of a number of specific examples. In 
increasing order of complexity we look at a spatially uniform jet evolving in time, a 
three-dimensional jet evolving in space, and an axisymmetric vortex evolving in both 
space and time. We start with a spatially uniform jet which is dissipated by the 
sudden application of a transverse magnetic field. This simple (perhaps even trivial) 
example provides a clear illustration of our three general principles. It also provides a 
useful stepping-stone to our second example of a steady three-dimensional jet evolving 
in space. Unlike the two-dimensional jets studied by previous investigators, a three- 
dimensional jet cannot be annihilated by magnetic braking. Rather, its cross-section 
deforms in such a way that the momentum flux of the jet is conserved, despite a 
continual decline in its energy flux. We conclude with a discussion of magnetic 
damping of axisymmetric vortices. As with the jet flows, the Lorentz force cannot 
destroy the motion, but rather rearranges the angular momentum of the flow so as to 
reduce the global kinetic energy. This process ceases, and the flow reaches a steady 
state, only when the angular momentum is uniform in the direction of the field lines. 
This is closely related to the tendency of magnetic fields to promote two-dimensional 
turbulence. 

1. Introduction 
It is well known that a static magnetic field can suppress motion in an electrically 

conducting liquid. To some extent, the mechanism is clear. Motion of the liquid across 
the magnetic field lines induces a current. This leads to Joule dissipation and the 
resulting rise in thermal energy is accompanied by a corresponding fall in kinetic 
energy. It is as if each element of fluid experiences a frictional drag. Indeed, the concept 
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of a frictional force is not a bad one in two-dimensional flows where, as we shall see, 
the Lorentz force is of the form ---luI, where 7 is a time constant related to the 
applied magnetic field and uI represents the velocity components perpendicular to the 
field lines. 

In recent years this phenomenon has been exploited in a range of metallurgical 
processes, as well as in the laboratory. For example, in the continuous casting of steel, 
a static magnetic field is often used to suppress motion within the mould. Sometimes 
this motion takes the form of a submerged jet, which feeds the mould from above, and 
sometimes it takes the form of large eddies or vortices (Szekeley et al. 1992). In other 
solidification processes, such as the continuous casting of aluminium, or the Bridgeman 
technique for growing semiconductor crystals, it is widely believed that natural 
convection has a detrimental effect on the structure of the final product (Davidson & 
Flood 1994). As in the casting of steel, the imposition of a static magnetic field is seen 
as one means of suppressing these unwanted motions. (See, for example, Alboussiere, 
Garandet & Moreau 1993, and Muller, Neumann & Weber 1984.) 

Magnetic damping is also employed in the laboratory. An early example is the use 
of a static magnetic field to delay the onset of Rayleigh-Binard convection in a fluid 
heated from below. (See, for example, Moreau 1990.) A more recent example arises in 
the ‘hot-wire’ technique for measuring the thermal conductivity of liquid metals. Here 
the conductivity is determined by monitoring the rate at which heat diffuses into the 
liquid from a long thin vertical wire. This technique relies on conduction being 
dominant over convection. Yet natural convection is always present to some degree in 
the form of an axisymmetric buoyant plume (Saito, Matsumoto & Utaka 1987). Again, 
magnetic damping is one means of suppressing the unwanted motion (Nakamura et al. 
1990). This is illustrated in figure 1 (a). 

Clearly, there are a number of important commercial processes where a static 
magnetic field is used to suppress unwanted motion. Frequently these flows take the 
form of submerged jets or eddies, and often they are driven by buoyancy. In this paper 
we consider the influence of a uniform magnetic field on both submerged jets and 
isolated vortices (see figure 1). We shall include buoyancy, but only to the extent that 
it may be used to maintain a vertical jet (figure la). 

This study touches on two traditional fields of research. One is the damping of 
turbulent flows by a static magnetic field. The other is the suppression of submerged 
jets by magnetic damping. We shall postpone our review of MHD turbulence until 
43.2, as it requires some detailed knowledge of the governing equations. However, at 
this point it is worth discussing what is known of MHD jets. 

Perhaps the earliest analysis of a submerged jet in a static magnetic field is that due 
to Moreau (1963 Q, b). He considered the development of a steady two-dimensional jet 
(a sheet) under the influence of a uniform transverse magnetic field. The flow was taken 
as laminar and Moreau was able to obtain an exact solution of the Navier-Stokes 
equations. This solution revealed that the Lorentz force destroys the jet momentum 
and that, rather surprisingly, the jet is completely annihilated within a finite distance 
of its source. Moffatt & Toomre (1967) also investigated this problem, focusing 
particularly on inviscid jets. Again, it was found that the jet momentum is completely 
destroyed within a finite distance. Elements of these studies were later extended to two- 
dimensional turbulent jets by Bansal & Gupta (1978). 

These two-dimensional jets are singular in at least one respect. They involve a 
current which flows only in a plane normal to the jet (parallel to the sheet). 
Consequently, it is unnecessary, in a mathematical sense, to specify return paths for the 
induced current. In this paper we consider the development of three-dimensional jets. 
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FIGURE 1. Examples of magnetic damping of liquid-metal flows : (a) a buoyant plume is generated by 
a hot wire and a magnetic field is then imposed which dissipates the jet; (b)  a jet is created by injecting 
fluid at the boundary; (c)  a magnetic field dissipates an isolated vortex. 

These may start out as axisymmetric, but soon develop a more complex structure. As 
noted by Moffatt & Toomre (1967), such jets behave quite differently from their two- 
dimensional counterparts. In particular, it is now necessary to consider how, through 
the action of a distributed electrostatic potential, the induced current recirculates 
within the bulk of the liquid. This closing of the current paths has a profound influence 
on the development of the jet. It is no longer possible to destroy momentum, as occurs 
in a two-dimensional jet. Rather, the Lorentz force redistributes linear momentum in 
such a way as to reduce the kinetic energy of the flow. One consequence of conservation 
of linear momentum is that, in contrast with the two-dimensional case, a three- 
dimensional jet cannot be destroyed by a magnetic field. 

An analogous process occurs in the magnetic damping of vortices. Here, closing of 
the current lines ensures that at least one component of the angular momentum is 
conserved. Consequently, the Lorentz force acts to redistribute the angular momentum 
in such a way as to reduce the kinetic energy of the vortex. However, conservation of 
angular momentum places a lower bound on the global kinetic energy of the flow, and 
so, just as with a jet, the vortex cannot be destroyed by magnetic damping. 

The structure of the paper is as follows. In $2, we introduce a number of simplifying 
assumptions. Like Moffatt & Toomre (1967), we take the Reynolds number to be high, 
so that the flow may be treated as inviscid, and the magnetic Reynolds number be low, 
so that perturbations to the applied magnetic field may be neglected. Fortuitously, such 
a parameter regime is typical of many industrial processes. Next, in $ 3.1, we outline the 
integral characteristics of three-dimensional magnetic damping. In particular, we show 
that the Lorentz force does not alter the global momentum of a fluid (angular or 
linear), although it does destroy kinetic energy. Moreover, the Lorentz force causes the 
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flow to evolve in such a way as to minimize its global Joule dissipation, and it does this 
by propagating momentum and vorticity out along the magnetic field lines, a process 
which is familiar in the context of MHD turbulence. In $3.2 we discuss the distinction 
between this interpretation of Ohmic damping, which is essentially a global one, based 
on the conservation or evolution of certain integral characteristics of the flow, and the 
classic interpretation of MHD turbulence which is local in nature, based on the 
vorticity transport equation. This distinction is made clear in $ 3 . 3 ,  with the aid of the 
simple example of flow in a sphere. 

In the remaining sections we illustrate these rather general observations with a 
number of specific examples. In increasing order of complexity we look at a spatially 
uniform jet evolving in time, a steady jet evolving in space, and finally, an axisymmetric 
vortex evolving in both space and time. 

Our first example is somewhat idealized and mathematically rather trivial. 
Nevertheless, it does capture the essential features of magnetic damping in a simple 
transparent way, and so provides a useful stepping-stone to related more complex 
examples. Here a transverse magnetic field is suddenly applied to jet which is initially 
axisymmetric (figure 1 a). The jet may be isothermal, or else maintained by buoyancy. 
We ignore streamwise variations in the jet velocity, so that, at each instant, all cross- 
sections of the jet look the same. The resulting problem is linear. This simple flow 
captures the key role played by the current return paths in conserving or maintaining 
momentum, and in minimizing the global Joule dissipation. 

Our second problem is closely related to the first, but is mathematically more 
complex. In brief, it is the three-dimensional counterpart of the two-dimensional jets 
(sheets) of Moreau (1963a, b) and of Moffatt & Toomre (1967). Here an (initially) 
axisymmetric jet is created by injecting fluid through an aperture in a sidewall (figure 
1 b). Although this is a steady problem, there is a direct analogy between the spatial 
development of this flow and the temporal evolution of our first example. 

Our final, and most complex, example is the damping of axisymmetric vortices 
(figure 1 c). Rather surprisingly, there is a qualitative analogy between this flow and the 
jet flows described above. Angular momentum now plays the role previously occupied 
by linear momentum. In particular, it is globally conserved and propagates along the 
magnetic fields lines. The mechanism of propagation is essentially the same as for linear 
momentum. 

2. Simplifying assumptions and governing equations 
Suppose that our liquid metal has thermal diffusivity a, electrical conductivity CT, and 

density p. Also, let it occupy a domain V which is infinite, or else is bounded by an 
electrically insulating surface S.  For jet-like flows we shall adopt Cartesian coordinates 
(x, y, z )  with the jet directed along the z-axis, and an imposed, uniform magnetic field, 
B, applied in the x-direction. The jet may be driven by injecting fluid through the 
boundary, or else take the form of a spatially uniform stream, possibly driven by 
buoyancy (see figure 1). In cases where the jet is thermally driven, we take z to point 
vertically upward. Let the velocity field be u, the current density be J,  and the 
characteristic thickness of the jet or vortex be 6. 

It is informative to estimate the time it takes the Lorentz force to decelerate a typical 
fluid particle. In the absence of an applied electric field, Ohm’s law gives J - auB, and 
so the Lorentz force per unit mass becomes 

F =  J X  B / p  * -(i~B’/p)u. 
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Buoyancy and pressure forces apart, the particle decelerates according to 
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Du 
- - - (aBZ/p) u. 
Dt 

Clearly, the Lorentz force acts on a time scale of 

7 = p/(al?”. (2.1) 
We now place some restrictions on the magnitude of 7. We shall assume that 7 is much 
greater than S/u, yet much smaller than the diffusive time scale, Sz/a. That is, 

( 2 . 2 4  

The first of these inequalities may be rewritten as 

N = d 2 S / @ u )  < 1. (2.2b) 

In the conventional nomenclature of MHD, this represents the case of a low magnetic 
interaction parameter. The second of the inequalities in (2.2) implies that, for buoyant 
jets, the temperature field may be considered as ‘frozen’ in the fluid on a time scale of 
T .  Consequently, if we suddenly apply a B-field to a buoyant jet, we may neglect 
thermal diffusion during the process of magnetic damping. 

We shall make two further assumptions. It is convenient to take the Reynolds 
number to be high, so we may treat the fluid as inviscid, and the magnetic Reynolds 
number to be low, so that perturbations to the imposed B-field may be neglected: 

s / u  6 7 < P/a. 

Re = uS/v B N-’ B 1, 
Re, = p a u s  6 1.  

( 2 . 3 ~ )  
(2.3b) 

Expression ( 2 . 3 ~ )  implies that viscous forces are much smaller than the Lorentz force, 
while (2.2b) states that inertia is much greater than J x  B. 

The limitations imposed by (2.2) and (2.3) are not, in fact, overly restrictive. 
Consider, for example, a 1 cm diameter jet of steel passing through a magnetic field 
of 0.1 T at a speed of 10 cm s-l. Typical thermophysical properties for steel are: 
c = 0.7 x 1O6SZ-’ m-’, p = 7 x lo3 kg m-3, a = 5 x m2 s-l. In 
this case our various dimensionless groups have values of 

m2 s-l, and v = 

S2/ar = 20; N = 0.1 ; Re = lo3; Re, = 0.9 x 

Clearly, inequalities (2.2) and (2.3) are (almost) satisfied. 

Ohm’s law becomes 

where @ is the electrostatic potential, and B is the unperturbed uniform magnetic field. 
Given u, we may determine both J and @ from (2.4). Since J is solenoidal, @ is 
determined by the divergence of (2.4) : 

where o is the vorticity. Taking the curl of (2.4), on the other hand, furnishes an 

We may now write down a simplified set of governing equations. By virtue of (2.3b), 

J =  a ( - V @ + + x B ) ,  (2.4) 

V2@ = B - o ,  (2.5) 

expression for J :  
V x J =  ~ B - V U .  

Note that the current is linear in u and disappears only when the motion is uniform 
along the fieldlines. This current gives rise to a Lorentz force per unit mass, F, of 

J x B  - uL + v(B x V@) F=---- 3 

P 7 P 
(2.7) 
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where uL = (0, uy, uz). Clearly, in the absence of an electrostatic potential, both the y -  
and z- components of momentum experience a decelerating force of -u l / r .  This is 
what happens in the two-dimensional jets of Moreau (1963a, b) and of Moffatt & 
Toomre (1967). However, we shall see later that the potential @ is non-zero in three- 
dimensional flows, and that this has a profound influence on the evolution of the 
motion. Note that we may eliminate @ from (2.7) by taking the curl of this expression: 

Let us now turn to the equation of motion for the liquid. In the interests of generality, 
we shall include a buoyancy term. Neglecting viscous shear stresses, we have 

where T is the temperature, ,8 is the expansion coefficient, and we have used the 
Boussinesq approximation for the buoyancy force. Using (2.8), we may rewrite this in 
terms of u :  

For isothermal jet flows, where the dominant velocity is uz, this simplifies to 

(2.10) 

(2.11) 

This suggests that there is a similarity between a spatially uniform jet evolving in time 
(DuJDt = au,/at), and a steady jet evolving in space (DuJDt = u-VU,). We shall see 
that this is indeed the case. 

Finally, we need to choose a datum for T. The only case where we shall allow for 
buoyancy is the jet-like flow shown in figure 1 (a). Here it is natural to choose T to be 
zero in the far field. Now in jet flows the pressure gradient in (2.9) disappears and, as 
we shall see, the volume integral of the Lorentz force is also zero. Consequently, 
isothermal jets conserve momentum, while the momentum in a thermally driven jet 
increases monotonically. (Actually, the choice of datum for T turns out to be rather 
unimportant. Switching datum merely adds or subtracts a uniform pressure gradient 
to (2.9). This, in turn, simply implies a uniform acceleration of the flow, depending on 
how the pressure is chosen at infinity. In the linear problem shown in figure l(a), 
superposition applies, and so consequently, changing the datum for T merely adds or 
subtracts a uniform acceleration. This does not alter the way in which the flow 
develops, other than in a trivial sense.) 

We shall now establish some of the more general properties of flows governed by 
(2.10). 

3. An integral approach to magnetic damping 
3.1. Conservation of momentum, destruction of energy, and evolution 

to minimize dissipation 
Expressions (2.8) and (2.9) exhibit a number of interesting yet rather general features. 
We shall identify these here, before looking at specific examples of magnetic damping. 
This will help establish some of the recurring themes which will emerge in subsequent 
sections. 
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The essential point is this. A closed current loop, for example a wire, which is 
situated in a uniform magnetic field experiences a magnetic torque which is 
perpendicular to B. However, it experiences no net force. (See, for example, Jackson 
1962.) Since an arbitrary distribution of J may be considered as the superposition of 
such current loops, the Lorentz force cannot alter the global linear momentum of a 
fluid, nor can it change the component of angular momentum parallel to B. Now this 
is important because, in certain inviscid flows, the mechanical forces do not change the 
linear momentum of the fluid (e.g. in isothermal jet flows), while in others the 
mechanical forces do not change the angular momentum (e.g. flow in a sphere). In such 
cases, the linear or angular momentum is conserved during magnetic damping, despite 
the Joule dissipation. This implies that magnetic damping cannot completely destroy 
the flow. Rather, it redistributes the linear or angular momentum in such a way as to 
reduce the kinetic energy of the motion. 

The nature of this redistribution can be deduced from (2.6). Since J i s  linear in u, we 
might anticipate that the integral of the Joule dissipation is of the order of E, the kinetic 
energy of the flow. If this were so, then (buoyancy forces apart) E would decay 
according to 

dE - - - E  
dt 

and eventually the flow would be annihilated. As this contravenes conservation of 
momentum, the fluid must find some means of lowering its Joule dissipation. The key 
lies in (2.6). The dissipation can be reduced by redistributing the fluid momentum more 
uniformly along the B-lines. Indeed, when the flow is perfectly uniform along the field 
lines the Joule dissipation is zero. This spreading of angular or linear momentum along 
the B-lines manifests itself repeatedly in the examples which follow. 

Let us now quantify these arguments. There are three results which we shall prove. 
First, although the Lorentz force destroys kinetic energy, the net linear momentum 
remains unchanged, as does the component of angular momentum parallel to B. 
Second, these flows evolve so as to minimize their Joule dissipation. More precisely, the 
ratio of the Joule dissipation to the kinetic energy falls as the flow evolves. This is 
essential to conserving or (for buoyant jets) maintaining the momentum of the flow. 
Third, the reduction in dissipation is achieved by propagating linear or angular 
momentum out along the field lines. In the case of ajet, the flow does this by elongating 
its cross-section in the direction of the B-lines. Similarly, a region of intense vorticity 
spreads along the field lines. 

The first of these results is readily established. From (2.4) and (2.7) we have 

F-u = - J 2 / @ ~ ) - V * [ @ p J / p ]  

from which we obtain the well-known result 

That is, the global work performed by the Lorentz force is always negative. We can 
imbed this in a mechanical energy equation by taking the product of (2.9) with u and 
integrating over the volume V :  

dE 
- = -$s Hu-dS- 
dt 
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F J  

FIGURE 2. The current J consists of closed loops, so if the fluid is locally decelerated at one point, 
it must be accelerated at another. 

Here H is Bernoulli's coefficient and E is the global kinetic energy per unit mass of the 
fluid. In this paper, we consider cases where the last integral on the right is positive (i.e. 
thermally driven jets). Consequently, in the absence of a mass flux through the surface 
S, we may rewrite (3.2) in the form 

Here G is the generation of energy and D is the global dissipation. In the absence of 
buoyancy, E decays monotonically. However, this fall in kinetic energy is not matched 
by a corresponding fall in linear momentum. This becomes evident if we note that, 

JvJ ;dV= J V.(xiJ)dV= O 
V 

from which we obtain the well-known result 

l v F d V = - B x  JdV=O.  s (3.4) 

For every fluid element which is decelerated by F, there is a corresponding element 
which receives an equal and opposite acceleration. This is a direct consequence of 
insisting that the current paths close within V .  (See figure 2.) The fact that F cannot 
create or destroy global momentum is particularly important for jet flows. In 
isothermal jets it implies that momentum is conserved, while in buoyant jets the 
momentum increases. In either case, momentum is maintained in the face of Joule 
dissipation. 

It is not difficult to show that a similar result holds for angular momentum. The 
magnetic torque is 

We are interested particularly in the component of T which is parallel to B: 

T = x x F = p - ' [ ( x - B ) J - ( x . J ) B ] .  

Evidently, this integrates to zero, implying that the Lorentz force cannot create or 
destroy this component of angular momentum. One physical interpretation of this 
result is to consider each current 'tube' to be the sum of an infinite number of 
infinitesimal current loops, as in the conventional proof of Stokes theorem. Then each 
elemental current loop experiences a torque of 

d T  = (dm) x B, 
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where dm is its dipole moment. The net torque on each current tube is then 
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T = C d m  x B, 

which clearly has no component parallel to B. This result is crucially important for 
vortical flows, yet it seems to have been largely overlooked in the literature on magnetic 
damping. 

Consider now our second assertion: that the flow evolves so as to minimize its Joule 
dissipation. Our starting point is the rate of change of dissipation. Noting that 

we may express the rate of change of D in the form 

dt (3.5) 

We are also interested in the rate of change of relative dissipation, DIE. From (3.3) and 
(3.5) we have 

which, with the aid of the Schwarz inequality, becomes 

Now each flow evolves partially as a result of its own inertia, which depends on its 
previous history, partially as a result of the buoyancy force, and partially as a result 
of the Lorentz force. Suppose that, in a time St, the velocity changes by an amount 6u. 
Consider only that contribution to Su which arises from the Lorentz force, 

6u, = FSt. 

Then, from (3.5), the corresponding contribution to 6D is negative. Clearly, the 
Lorentz force acts to continually lower the global dissipation. However, this is hardly 
surprising. Both D and E are quadratic in u, so when E declines as a result of Joule 
dissipation, we would expect D to fall also. The more important and surprising result 
lies in (3.6). Again, consider only that part of 6u which is produced by the Lorentz 
force. The corresponding contribution to the change in relative dissipation, 6(D/E), is 
negative. Consequently, to the extent that the Lorentz force influences the flow, the 
global dissipation declines, and it declines faster than the kinetic energy. We conclude, 
therefore, that the Lorentz force tends to guide the flow in such a way as to produce 
a continual reduction in the relative dissipation, DIE. Whether or not the flow is free 
to follow this 'path of least resistance' depends, of course, on the other forces acting 
in the fluid. However, in cases where linear or angular momentum is conserved, we may 
show that the Lorentz force must ultimately win. For example, consider an isothermal 
flow. Then (3.3) may be integrated to give, 

E = E,exp[ -J)DIE)dt], 

where E,, is the initial kinetic energy. Now, as we shall see, conservation of momentum 
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FIGURE 3. A jet can minimize the Joule dissipation by stretching its cross-section 
along the B-lines. 

limits the rate of decline of E. In some cases, such as a confined vortex, it implies E is 
bounded from below (see 93.3). In others, such as an isothermal jet, it implies that E 
decays algebraically, and not exponentially (see 94). In either situation, this is possible 
only if the relative dissipation, DIE, decays at large t .  

For a buoyant jet the argument must be modified slightly, but the conclusion is 
broadly similar. In this case we have 

E = - ( D / E ) E + G ,  

where G is, at most, of order Now suppose D I E  were to remain constant, or else 
increase with time. Then, as the jet momentum and energy increased under the 
influence of buoyancy, the first term on the right of our energy equation would increase 
faster than the second. Eventually, the two terms must become equal and at this point 
E ceases to grow. However, the jet momentum must continue to rise, implying that the 
ratio of energy to momentum falls. This is possible only if the jet velocity falls, which 
is incompatible with an increasing momentum. (This is discussed in more detail in 94.) 
Once again, we conclude that the relative dissipation declines at large t .  

We shall see that this evolution to minimize relative dissipation is a consistent theme 
of subsequent sections, and that this evolution is inevitably bound up with a 
‘spreading’ of the flow along the B-lines. This brings us to our third general result. 

A hint as to why elongation of the flow must occur comes from estimating the 
magnitude of D. From (2.6) we have 

D - ( E / w / L ) 2 ,  (3.7) 

where 6 is the minimum length scale of the flow and I, is the characteristic length scale 
in the direction of B. Evidently, if the relative dissipation is to decline, say to preserve 
momentum, then Zz/6 must increase. Thus a jet whose cross-section is initially 
axisymmetric can reduce its dissipation, and so help preserve its momentum, by 
adopting an elongated shape as shown in figure 3. In general, flows which conserve 
linear or angular momentum must undergo such a distortion in order to survive. 

It is informative to estimate the other integrals in the energy equation (3.3). The 
buoyancy term is of order 

G d g,8T,,,(2E)’12 - gpT,,, Eli2, (3.8) 
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where T,,, is defined as 
c 

T:,, = 1 T 2  d V. 

Note that T,,, has the dimensions of TL3I2, and is a constant of the motion when 
thermal diffusion is neglected. Our energy equation now becomes 

dE/dt - gPT,,, E1'2-(E/~)(8/ /1J2.  (3.9) 

The extent to which stretching of a flow can influence its survival can be estimated 
from (3.9). Consider the case of an axisymmetric jet which is suddenly subject to a 
transverse magnetic field. If the jet cross-section were to remain axisymmetric, then 
6 N 1, and (3.9) gives 

Eli2 - E;I2 e-t/2T + gPT,,, 7[ 1 - e-t/2T I, (3.10) 

where E,, is the initial kinetic energy. In cases where the buoyancy force is zero, 
the jet is dissipated on a time scale of 7. However, this contravenes conservation of 
momentum, and so clearly 6 - 1, is an unphysical option. For a buoyant jet, on the 
other hand, equation (3.10) implies Eli2 saturates at g/3Trns7. Once again this 
constitutes unphysical behaviour, essentially for the reasons discussed above. 

Now compare this with the more realistic case where stretching does occur, as 
indicated schematically in figure 3. For example, suppose the jet cross-section distorts 
from a circle to a sheet according to 

1; = P(t+7) /7 .  

Then at large times, (3.9) has solution 

Eliz - E:i2(t/7)-1i2 +$gPT,,, t. (3.11) 

The initial jet energy now decays algebraically, as t-'I2, rather than exponentially. Such 
a decay conserves momentum, since E1l2lZ is independent oft. In addition, buoyant jets 
no longer saturate, but rather grow as u - t .  Evidently, distortion of the jet cross- 
section substantially enhances the ability of the jet to survive in a magnetic field. 

3.2. Global versus local descriptions of magnetic damping 
In this, and in the subsequent sub-section, we shall show that the interpretation of 
magnetic damping given above is consistent with, or equivalent to, the classic view of 
Ohmic damping at large interaction parameter. Moreover, we shall show that our 
integral interpretation of damping allows us to extend some of the traditional ideas 
down to small values of the interaction parameter, where the governing equations are 
usually nonlinear (inertia % Lorentz force). 

There have been many notable studies of magnetic damping, particularly in the 
context of MHD turbulence. Typical of these are the work of Moffatt (1967), Alemany 
et al. (1979) and Sommeria & Moreau (1982). It is worth reviewing briefly some of their 
findings if only to place the subsequent discussion in context. Moffatt analysed the 
transient decay of turbulence in a strong uniform magnetic field. The interaction 
parameter was taken as large (the opposite of our case) and as a consequence the 
momentum equation could be linearized by ignoring advection of momentum. For 
circumstances in which Re, N is small, he found that, provided t is greater than 7 but 
much less than the eddy turnover time, the energy decays as (t/7)l/'.  More importantly, 
a form of two-dimensional flow develops, in the sense that the flow is independent of 
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the coordinate parallel to B. (Curiously, however, the fluctuating component of 
velocity parallel to B does not tend to zero, but rather increases.) This tendency 
to promote quasi-two-dimensional turbulence is in accordance with numerous 
experiments. 

Alemany et al. (1979) investigated experimentally the case where the interaction 
parameter took both low and high values. For their particular configuration, which 
consisted of a grid moving through a magnetic field, they observed a r-’.’ decay of 
energy. This is significantly faster than the decay in the absence of a magnetic field, 
reflecting the added effect of Joule dissipation. More importantly, they observed an 
increase in the integral length scale of the turbulence parallel to B, indicating an 
elongation of the turbulent structures in the direction of the B-lines. Close to the grid, 
this increase was rather limited, varying from - 10% to - 80% as the interaction 
parameter based on the eddy turnover time varied from - 0.1 to - 1.3. However, as 
noted by Alemany et al., the local interaction parameter increases as the turbulence 
decays, essentially because the eddy turnover time increases. Consequently, even in 
cases where the initial interaction parameter is moderate or small (but not too small), 
significant elongation of the eddies must eventually occur. 

The experiments of Alemany et al. are important as they constitute one of the few 
sets of measurements which are free from the influence of the boundaries. There have 
been many equivalent experiments performed in ducts (see, for example, Lielausis 
1975), and in these cases the boundaries normal to the field can be important. 
Sommeria & Moreau (1982) and Moreau (1990) discuss the distinction between the two 
sets of experiments, noting in particular that MHD duct flows are more prone to 
display two-dimensional characteristics. 

The tendency for turbulent structures to lengthen in the direction of the B-lines is 
generally explained in terms of the local vorticity transport equation. (See, for example, 
Sommeria & Moreau 1982.) Taking the curl of (2.10) gives, 

Dm 1 
Dt 7 

~ = 0 vu - - v-2[a2w/ax2]. (3.12) 

Alternatively, we could write the momentum equation in the form (see Sommeria & 
Moreau) 

(3.13) 

where P* is the sum of the magnetic pressure and the fluid pressure. If the flow is such 
that gradients parallel to B are significantly smaller than those in the transverse plane, 
then (3.12) becomes 

(3.14) 

where S is a typical transverse length scale. The implication is that vorticity (and 
momentum) tends to diffuse parallel to the magnetic field. From a local point of view, 
therefore, 1, increases owing to pseudo-diffusion, and consequently the relative 
dissipation, DIE, declines in accordance with (3.7). We might contrast this with our 
global interpretation, where conservation of momentum places restrictions on the rate 
of decay of E, which in turn requires DIE to decay, implying an increase in 1,. 

It would seem, therefore, that both interpretations come broadly to the same 
conclusions, albeit from different directions. However, the problem arises when N is 
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small, so that inertia is much greater than the Lorentz force. The diffusion argument 
then becomes rather weak. In particular, if there is no significant distinction between 
transverse and parallel length scales, as would tend to be the case in an inertially 
dominated turbulent flow, then one cannot strictly infer a diffusion equation like 
(3.14). In this situation it is usual to take a three-dimensional Fourier transform of 
(3.12), which indicates that the magnetic field suppresses preferentially those Fourier 
components of u which have a wave vector parallel to B. Now this, in turn, might 
suggest the development of a two-dimensional flow, as indeed happens when N is large 
(Moffatt 1967). However, when N is small, the vortex lines stretch and twist on a time 
scale of 6/u, which is much more rapid than 7. Consequently, while B slowly destroys 
certain wave-vector components, there is a vigorous redistribution of vorticity and 
energy between the components, as well as the generation of new vorticity. Recent 
numerical experiments by Oughton, Priest & Matthaeus (1994) indicate that, for 
turbulence decaying in a cube, anisotropy develops only when the ratio of the Lorentz 
force to the inertial forces is near to, or greater than, unity. For low values of this ratio, 
say 0.1, no isotropy was observed. (However, this may reflect the modest Reynolds 
number of their computations (typically 200).) In any event, we might conclude that 
magnetic damping at small N is a non-trivial phenomenon which is still incompletely 
understood. Certainly, the nonlinear equations (3.12) and (3.13) look quite formidable. 

An integral approach, on the other hand, can often furnish some useful information 
for surprisingly little effort. We shall take the example of flow in a sphere as a vehicle 
to illustrate the utility of this approach. 

3.3. Flow in a sphere: an illustration of the utility of an integral approach 
to Ohmic damping 

Suppose the fluid is isothermal and held in a sphere of radius R. At t = 0 we specify 
some quite arbitrary velocity distribution. For example, it may be a complex turbulent 
flow. Then we can show that, whatever the value of N ,  the flow evolves to a steady state 
in which all components of angular momentum are zero, except that which is parallel 
to B. The argument is elementary. We start by noting that neither the Lorentz force 
nor the pressure forces acting on S contribute to the net torque parallel to B. It follows 
that the global angular momentum of the fluid, H,  is conserved in the direction of B. 
This, in turn, places a lower bound on the kinetic energy of the flow. In particular, the 
Schwarz inequality gives us 

(3.15) 

where H B  is the component of angular momentum parallel to B. Provided HB is non- 
zero, the flow cannot come to rest. Yet (2.6) tells us that as long as there is some 
variation in velocity along the B-lines, the Joule dissipation remains finite and E 
continues to fall. Consequently, whatever the initial condition, the flow must evolve to 
a steady state which is strictly two-dimensional, exhibiting no variation of u along the 
field lines. Moreover, this steady state must have the same angular momentum, H., as 
the initial flow. In short, the flow adopts the form of one or more columnar vortices, 
each aligned with the B-field, all other components of angular momentum having been 
destroyed. Of course, during this process the relative dissipation decays to zero, while 
the characteristic length scale 1, increases in accordance with (3.7). All-in-all, the 
picture is much as described in $3.1. 

Now the arguments above hold not just for a sphere, but for any axisymmetric 
container which has the symmetry axis aligned with B. Also, they hold for any value 
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of N,  and in particular for small N where inertia is dominant. It is rather striking that 
such a simple steady state emerges even when stretching and twisting of vorticity is 
more vigorous than damping or pseudo-diffusion induced by B. It is not obvious that 
we could reach the same conclusions by inspection of the vorticity equation, 
particularly as this equation places no lower bound on E. (It is possible to construct 
a naive argument based on the local equations, as follows. As the motion decays, the 
eddy turnover time rises, so that the effective interaction parameter increases. When N 
exceeds a value of around unity the equations become almost linear and diffusion-like 
elongation of the eddies sets in. However, since E is bounded from below, this 
argument fails. Clearly, a more sophisticated line of reasoning is required.) 

Now the integral equations also furnish information on the transient behaviour of 
this flow. The most direct route is to determine the evolution of the angular momentum 
vector, and then use this to infer the changes in energy and vorticity. Our starting point 
is the magnetic torque, which may be written as 

x x ( J  x B) d V = [(x * V x J )  X] d V x B 

Here we have used the identity 

2x x Fi = ( x - v  x J ) ( x  x B ) i + v . [ ( x  x (x x B) ) ,J+(x  x B) ,x  x J ] .  

We now substitute for J using (2 .6) .  This furnishes an expression for the net torque in 
terms of the global angular momentum: 

Again we have used a vector identity, in the form 

(x . &) (x x Bli = v . [(x - u) (x x B), 2, - ix(x x B)( u] - +B(x x u) 1. 

It follows that the global angular momentum equation is, 

d H  - HL 
dt 47 
__ -__ - 

so that transverse components of H decay as 

Hl = Hlo exp [ - t/47]. 

(3.16) 

(3.17) 

(3.18) 

It is tempting to conclude that the steady state must also be reached on a time scale of 
47. However, this need not be so, and indeed we shall give a counter example in $6. We 
can show, however, that the initial decay in ‘excess’ energy (initial minus final energy) 
is at least as fast as the decline in the transerse components of H. The approach is to 
place a lower bound on the dissipation integral and then use the energy equation (3.3) 
to bound E from above. This procedure will also provide an upper bound for the rate 
of growth of the longitudinal lengthscale 1,. We start by introducing vector potentials 
for J and u, defined via the Biot-Savart law. For example, for J we have 

. ”  
V x b =  J,  
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where s = x - x'. We define the vector potential for the velocity field, a, in precisely the 
same way, and this us allows to write 

(3.19) 

The first of these inequalities may be established using the calculus of variations (see, 
for example, Roberts 1967). It turns out that A: is the least eigenvalue of a simple 
eigenvalue problem, the details of which need not concern us here. The second 
inequality comes from 'uncurling' (2.6) to give 

Next we note that, since J i s  restricted to a sphere, we have the standard result 

bdVx B = - (XxqdVX B =  SpT. I 3 ' S  
(See, for example, Jackson 1962.) This, with the aid of (3.16), furnishes a simple 
expression for the integral of the vector potential b in terms of H :  

S,b ,dV = +aHx B. 

This equation now provides a lower bound for the left-hand integral in (3.19), and thus 
provides the required lower bound on global dissipation: 

(3.20) 

Here we have found it convenient to define the longitudinal length scale 1, in terms of 
a, according to 1" (aa/ax)2dV= l v a 2 d V <  A;z~vu2dV. 

Expression (3.20) places an upper bound on I,, and hence an upper bound on the rate 
of elongation of the flow. More significantly, it provides the key result needed to 
estimate the decay in excess energy. Substituting the lower bound for D in energy 
equation (3.3) gives 

(3.21) AE = Eo- E 2 ~ [ 1 - exp (- t / 8 ~ ) ] .  

We conclude, therefore, that the decay in E is at least as rapid as the decay in the 
transverse components of angular momentum. 

Finally, it is natural to associate angular momentum with vorticity. We might 
anticipate, therefore, that a knowledge of the decline in H should shed light on the 
suppression of the transverse components of vorticity. In an integral sense this is indeed 
the case, as we have 

2 4  Hyo 
9v 

H = 2  'S  (R2-X2)WdV. (3.22) 

However, just as with (3.18), this does not guarantee that o everywhere approaches a 
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steady state on the time scale of 47. In fact, in general it does not. To obtain 
information about the decline in the local vorticity distribution we need to look at the 
enstrophy. The Schwarz inequality applied to (3.22) gives 

w;dV> lH:/R21.  (3.23) 

Here I is the moment of inertia of the liquid, and (3.23) may be applied to each 
component of enstrophy in turn. Of particular interest is the component of enstrophy 
parallel to B: 

s 
r 

This, like (3.15), confirms that the steady state is non-trivial. Evidently, an integral 
analysis furnishes a great deal of useful information, and for relatively little effort. 
Given that the interaction parameter may be small, so that the governing equations are 
nonlinear, this is somewhat surprising. 

3.4. Damping of more complex flows 
Of course, motion in a sphere is rather a particular case, and is hardly characteristic 
of the types of engineering flows discussed in 0 1. In more complex flows, the integral 
equations alone are not sufficient to describe Ohmic damping. In the examples which 
follow, which are more characteristic of engineering applications, we shall find it both 
useful and necessary to employ local (diffusion-like) arguments as well as integral 
constraints. Nevertheless, we shall see that our global interpretation of damping does 
provide a useful framework for interpreting a range of problems. All of the examples 
which follow are characterized by: (a) the need to maintain momentum in the face of 
Joule dissipation; (b) a decay in relative dissipation just sufficient to maintain 
momentum; and (c) a gradual elongation of the flow along the B-lines which allows 
DIE to fall. 

The three flows which we shall examine are all shown in figure 1. We start with a 
spatially uniform jet which is dissipated by the sudden application of a transverse 
magnetic field (figure 1 a). This is mathematically rather trivial but provides a useful 
stepping-stone to our second example of a steady jet evolving in space (figure 1 b). This 
second flow is relevant to mould filling in the casting industry. For our final example 
we return to the topic of magnetic damping of vortices. Here we focus on axisymmetric 
flows as this allows us to examine the interaction of damped and undamped 
components of motion. 

4. Example 1. Transient magnetic damping of a spatially uniform jet 
Suppose we have a unidirectional flow, u = u(x, y ,  t )  &, which is initially axisymmetric 

and localized near the origin. This is illustrated in figure 4(a). The jet may be 
isothermal, or else driven by buoyancy. Since the flow starts as axisymmetric, it is 
convenient to introduce polar coordinates, r and 0, in the (x,y)-plane. Physically, such 
a flow could be generated as shown in figure 1 (a), where heat is allowed to diffuse out 
of a long hot wire for an extended period of time (greater than 7). 

At t = 0 we impose a uniform magnetic field, B = B&,. This, in turn, induces a 
current which is confined to the (x,y)-plane, as shown in figure 4(b). The current is 
driven in the y-direction by u x B, but is forced to recirculate back through regions of 
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weak or zero flow by the electrostatic potential (figure 4c). Since the current is two- 
dimensional, we can introduce a streamfunction for J, defined through 

J =  CTBV x[$-&~]. 

Ohm's law, in the form of (2.6), then requires 

The Lorentz force is simply 
vz$ = -au/ax. 

and so the equation of motion reduces to 

(4.1) 

We can eliminate I) from this expression with the aid of (4.2), to produce a one- 
dimensional version of (2.10) : 

This equation is linear and so is readily solved for u. However, inspection of (4.4), in 
conjunction with the corresponding energy equation, 

c(g) = gpTu-(p(pa)-l J 2 - V - ( @ J / p ) ,  
at 2 

furnishes a great deal of useful information without the need to solve (4.5). In 
particular, we may establish four important features of the flow. First, it is evident that 
linear momentum is conserved in an isothermal jet. This is a special case of (3.4): 

Second, figure 4(c) shows that the returning current at large 1x1 actually accelerates 
previously stagnant fluid. This helps conserve global momentum, and is the first hint 
that energy 'diffuses' out along the x-axis. Third, we would expect regions of reverse 
flow to form at the points marked R in figure 4(c), where the Lorentz force is negative 
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Momentum diffuses out along B-lines 

I 

I -  B 

FIGURE 5.  Energy flows out along the current lines carrying momentum into previously stagnant 
regions. In this way momentum diffuses out along the x-axis. 

t l s  small t l s  large 

FIGURE 6. Transient magnetic damping of a uniform jet: current distribution 
at small and large dimensionless times, t /r .  

and the initial jet momentum is small. Finally, the third term in equation (4.6) 
represents a flux, or redistribution, of energy. Evidently, the kinetic energy flux per unit 
area is @J/p ,  so that energy flows out along the J-lines as shown in figure 5.  Notice that 
this flux of energy is directed out of the jet and towards large 1x1. This is another 
manifestation of the fact that momentum diffuses out along the field lines. 

This propagation of momentum along the B-lines is essential to the maintenance of 
momentum. To see why this is so consider the case of an isothermal jet. We may rewrite 
(4.5) in the form 

If the jet were to remain axisymmetric, the right-hand side of this equation would be 
zero, causing the jet momentum to decay as 

us2 - q, e-tI2782 (4.9) 

which contravenes conservation of linear momentum. 
It is illuminating to consider the influence of this diffusion of momentum on the 

evolution of the current lines. The development of the current distribution is shown 
schematically in figure 6.  The current starts with a dipole-like shape, characteristic of 
an isolated jet, and then develops an elongated structure as the jet spreads along the 
x-axis. This elongation of the J-lines provides the essential mechanism by which the 
flow minimizes its Joule dissipation. By developing a sheet-like structure, the jet forces 
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longer and longer return paths on the current. However, the potential difference which 
drives the current, uB6, remains the same. The net result is a fall in IJI and a 
corresponding drop in dissipation. This is consistent with (3.7), in the form 

(4.10) 

and ensures that DIE continually falls, as required by (3.6). 
We can also determine the asymptotic structure of these jets simply from inspection 

of the governing equations. The key to understanding this structure is to note that 
momentum diffuses out along the magnetic field lines, resulting in a continual 
distortion of the jet cross-section. That this is indeed a diffusive process may be 
established as follows. For large t ,  the jet cross-section becomes long and narrow, 
1, >> 6, and so (4.5) simplifies to 

(4.11) 

Suppose we now Fourier-transform in the y-direction. Let U be the transformed 
velocity, and k be the wavenumber. Since the origin of the motion is unimportant to 
our argument, we shall neglect the buoyancy term. The transformed equation is 

Thus, as suggested in $3.2, U does indeed diffuse along the B-lines, with an effective 
diffusivity of cyb - a2/r. That momentum can diffuse along a magnetic field line is, of 
course, well known in the context of MHD turbulence. The process may be regarded 
as a degenerate form of AlfvCn wave propagation, where Re, is small. 

At this point it is convenient to introduce the dimensionless time t^ = t/7. For large 
f, (4.11) suggests that I, scales as 

1, - B ( t / T ) 1 ’ 2 ,  t^ % 1. 

We would expect, therefore, that u takes the form 

u = u(x/tl’”,y, 8, t^ + 1. (4.12) 

In fact, it is not difficult to show that, for infinite domains, that is indeed the case. The 
most convenient method of establishing u at large times is to use Fourier transforms. 
Let U be the cosine transform of u, 

V k , ,  kJ = 4 J; I,” U(X,Y)cos(xk,)cos(Yky>dxd,y, 

and let T(k)  be the equivalent transform of T(r). (Here, k2 = kz + ki . )  Our equation of 
motion, (4.5), now becomes 

aU U 
- + C O S ~  4 - = gPT; 
at 7 

cos 4 = k, /k ,  

from which 

(4.13) 
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Here Uo is the transform of the initial velocity distribution un(x). The inverse transform 
of (4.13) is 

u(x, t )  = 7 t P  1; e-(cosz$)i cos (xk,) cos (yk,) U,(k) k dk dq5 

Although this is rather a complex expression, we shall see that it simplifies considerably 
when t becomes large. In any event, we have a simple relationship for the velocity on 
the axis: 

u(0, t )  = u,,(o) (2/7t) S;” e-(cos24) 
n 

t g ~ r T ( 0 ) ( 2 / 7 t ) ~ ’ [ l  -e&c0s2~)f] [co~$]-~dq5. (4.15) 

We now let t become large. If we rewrite the integrals in terms of s = 7c/2 - 4, note that 
only small values of s contribute at large t ,  and introduce p = sP2, we find, 

0 

The first of the integrals has been simplified using the relationship 

1: e-P2 cos (hp)  dp = (x1/’/2) e-“gi4; h = kx/t^liz.  

The velocity on the axis at large t is particularly simple: 

u(0, t )  = __ un(o) + gp’ T(0) (2 / R) (7T i)l’Z 
(nip2 

(4.17) 

Expression (4.16) confirms that, as anticipated, x scales as (a,  t)’”. Consequently, 
(4.12) is indeed the correct form at large times. Notice that, for isothermal jets, 

while buoyant jets grow continuously (u  - Piz) .  This is entirely consistent with the 
arguments of $3, and contrasts with the hypothetical case where the jet cross-section 
does not deform and so either u decays exponentially (isotherm jets) or else saturates 
at u - gPTr (buoyant jets). (See expressions (3.10) and (3.1 l).) 

It is clear from (4.16) that the jet velocity at large times must always be of the form 

elongation of the jet cross-section has produced an algebraic decay of u(u - t-l/’ 1 3  

(4.18) 

where 4 is determined by the initial conditions and F, depends on the temperature 
distribution. Expression (4.18) shows a remarkably simple dependence of u on t .  
Moreover, it indicates that we may reduce the number of independent variables in 
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(4.1 1) from three to two. Consider, for example, an isothermal jet. Substituting (4.18) 
into (4.11) gives 

(4.19) 

Yet again we have a diffusion equation, only this time information diffuses out along 
the y-axis as x increases. Any asymptotic result we obtain from (4.16) must be a 
solution of (4.19). 

Finally, we note that, by virtue of (4.18), the kinetic energy of the jet varies as 

E - EQ/P2 
for an isothermal jet, and 

E - g/hT(o) f3I2  

for a buoyant jet. In fact, we can find exact expressions for the global energy and 
dissipation integrals, E and D, using Parseval’s theorem. This gives 

E = &J:l’’ U2kdkdq5, 

D = Llr T7C2 
cos’ qi U2kdkd$. 

For an isothermal jet, these integrals become 

Conversely, for a buoyant jet with zero initial momentum, we find 

(4.20) 

(4.2 1) 

(4.22) 

(4.23) 

(4.24) 

(4.25) 

As before, T,,, is defined as the square-root of the integral of T2.  For large t ,  E and 
D take on particularly simple forms. These may be found using the same procedure 
that furnished (4.16). For the case of an isothermal jet, we find 

while a buoyant jet with zero initial momentum behaves as 

(4.26) 

(4.27) 

(4.28) 

(4.29) 
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FIGURF. 7. Transient damping of a jet in an infinite domain: shape of the velocity profile at large 
times. The x-axis has been scaled by (t/7)”’. 

These expressions show the expected tr”’ and t3 I2  dependence for E, which is an 
inevitable consequence of (4.18). Note also that the relative dissipation, DIE, decreases 
with time, as predicted by (3.6). 

We conclude this discussion of the flow structure at large times with a simple 
numerical example. Consider the case of an isothermal jet, with an initial velocity 
distribution of 

This initial condition transforms to 

u,,(r) = ve-r2/J2. 

U J ~ )  = RVP e ~ ~ ~ ~ ~ / ~  

and so the velocity distribution at large t is 

u(x ,  t )  = w 2(:):,2 [ox exp [ - 7 (1 + $)] cos ( y k )  k dk. 

This may be integrated to give 

V 1 Y 2  u(x, t )  = - 
(7Cf)””l +x”(S“] G(oD; = S2 + x ’ / f ’  

(4.30) 

where G is Kummer’s hypergeometric function 

The shape of this velocity distribution is shown in figure 7. As expected, the jet cross- 
section elongates at the rate t”’, while regions of reverse flow are clearly visible to either 
side of the central jet. 

In summary then, elongation of the jet cross-section, anticipated in 3 3  and implied 
by figure 4, persists to large times, where the jet adopts a sheet-like structure with 
regions of reverse flow. This continual distortion of the jet minimizes the (relative) 
Joule dissipation, DIE, by forcing longer and longer return paths on the induced 
current. I t  also provides the essential mechanism for conserving or maintaining linear 
momentum. Let us now see how these ideas carry over to a jet developing in space 
rather than time. 
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5. Example 2. MHD jets formed by sidewall injection 
We now turn our attention to the geometry shown in figure 1 (b). Here a submerged 

jet is formed by injecting fluid through a circular aperture in a sidewall. A uniform 
vertical magnetic field is applied to the jet, acting to dissipate the motion. This steady 
flow is the three-dimensional equivalent of the two-dimensional jets of Moreau 
(1963a, b) and of Moffatt & Toomre (1967). 

Before performing a formal analysis of this problem, let us try to construct a picture 
of what occurs. As the jet emerges into the B-field, currents are induced in the y -  
direction by flu, x B. This, in turn, produces a braking force on the jet. However, like 
Moffatt & Toomre, we have taken the magnetic interaction parameter, N ,  to be small. 
That is, the magnetic forces are much smaller than the jet inertia. Thus, initially, the 
B-field has only a slight effect on the jet, and so it continues to propagate in the z- 
direction. The magnetic forces do ultimately influence the jet, but this is a relatively 
slow process, so that the characteristic length scale in the z-direction, I,, is much greater 
than 1, and 1,. Thus the jet adopts a long thin shape. Now the currents flu, x B must 
form closed paths. Since each cross-section of the jet looks very much like its 
neighbouring cross-sections, these currents close within the (x, y)-plane, just as they did 
in our transient problem. The situation is as shown in figure 8. The current paths adopt 
the characteristic dipole-like structure, with the induced current returning through 
regions of weak or zero flow. It follows that a reverse flow is induced at points on the 
y-axis (marked R in figure 8 b), where the Lorentz force is negative and the jet velocity 
is small. In addition, momentum diffuses out along the x-axis to points marked A, 
where the Lorentz force is positive and the jet velocity is again small. In short, for 
precisely the same reasons as outlined in 84, momentum diffuses out along the x-axis 
and the jet cross-section becomes long and elongated. 

Now if the jet is to spread in the x-direction, then continuity requires that there is 
some entrainment of the surrounding fluid. (We shall confirm later that the mass flux 
in the jet does indeed increase with 2.) We would expect, therefore, that the jet draws 
in fluid from the far field, predominantly at large 1x1. Conversely, the region of reverse 
flow on the y-axis will produce an outward flow of mass near the wall. This is illustrated 
in figure 9. All-in-all, we expect a relatively complex, three-dimensional flow pattern. 

We now devote the rest of this section to justifying the picture given above. Of 
course, the governing equations for this flow are complex and nonlinear, and so we 
cannot readily find simple analytical solutions. This is further complicated by the 
existence of a reverse flow, which limits the degree to which we can specify the 
upstream conditions. However, we shall construct general arguments which establish 
the essential features of the motion. In particular, we shall show that elongation of the 
jet cross-section is both inevitable and essential, and that reverse flow will, in general, 
occur. In addition, we shall establish the scaling laws for all three velocity components, 
and determine the rate of spreading of the jet with respect to z .  The starting point for 
our analysis is equation (2.10), in the form 

Consider the z-component of this equation. If we equate the first and last terms, and 
take 1, N 6, then we can express the interaction parameter, N ,  in terms of I, ,  1, and 1,: 

N - l:/&l,. 

It follows that, as expected, the jet develops slowly when N is small, in the sense that 
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FIGURE 8. MHD jet produced by sidewall injection: (a) spatial evolution of the jet; and (b)  current 
paths in the (x,y)-plane. Reverse flow occurs at points marked R and energy diffuses out to points 
marked A. 

1 
FIGURE 9. MHD jet produced by sidewall injection. The jet draws in fluid from the far field. 

However, a reverse flow produces an outward flow of mass near the wall. 

1, >> I,, 6. Next, we note that the second term in (5.1) is of order .,"/I:, which is a factor 
of ( c Y / ~ , ) ~  smaller than the other terms. It follows that the z-component of (5.1) 
simplifies to 

(5.2) 
1 a2u2 

v;,(u. VU,) = - - - . 
7 ax2 
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This equation of motion may be rewritten in the more familiar form 

177 

(5.3) 

where the operator V;: is defined through the expression 

V;;f= - f(x’,y’)ln [ ( ~ - x ’ ) ~ + ( y - y ’ ) ~ ]  dA’. 
4n. ’s 

Equation (5.3) might be compared with (4.5) for our transient, one-dimensional jet, 

Clearly, as noted in $2, there is a direct analogy between the two problems, with the 
temporal development of one corresponding to the spatial development of the other. 
This correspondence allows us to establish that a region of reverse flow does indeed 
occur. The argument is straightforward. We already know from the examples in 94 
that, for a typical jet-like distribution of uz, the operator 

produces negative values of F at all points on the y-axis, including those where u, is 
zero or small. Now in this problem the interaction parameter is small. Consequently, 
the magnetic forces are weak and the initial shape of the jet is determined largely by 
the inlet conditions. It follows that, initially, u, will have a typical jet-like distribution, 
and so F will induce a reverse flow on the y-axis. Of course, this reverse flow disrupts 
the initial conditions and our argument becomes somewhat circular. However, if the 
magnetic field is sufficiently weak ( N  < 1) we might expect, on physical grounds, that 
we can specify the velocity in the immediate vicinity of the orifice. 

It is natural to enquire as to the physical origin of (5.3). This may be established as 
follows. Since 1, >> l,, S and u, 9 ux, uy, the pressure is a function of z alone (to order 
N 2 ) .  But the pressure is zero at large x and y ,  and so it follows that p is everywhere zero. 
The equation of motion in the z-direction is therefore 

u-VU, = 4. 
It only remains to show that the right-hand side of (5.3) is indeed the Lorentz force, 
4. This arises from the two-dimensional nature of J, which in turn follows from the 
fact that 1, >> I,, 6 and u, & ux, uy. Since J is confined to the (x, y)-plane, we may re- 
introduce the vector potential 

J = CTBV x ($&,), 

where, as before, Ohm’s law requires 

The Lorentz force is then given by (4.3), and so the equation of motion is indeed 

We now revisit the ideas of conservation of momentum and destruction of energy, only 
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this time in the context of a jet evolving in space rather than time. That momentum is 
conserved follows directly from (5.6). In particular, at large r we have 

so that the right-hand side of (5.6) integrates to zero. If A4 is the momentum flux in the 
jet, then 

M = uzdA = const. (5.7) s 
In this sense, an MHD jet behaves just like a conventional jet, conserving momentum 
but, as we shall see, entraining mass. This is in marked contrast with a two-dimensional 
MHD jet, where momentum is destroyed. (Moffatt & Toomre 1967 noted this essential 
difference.) 

Next, we construct an energy equation from (5.6), analogous to (4.6): 

u.V($U~)  = -(gp)-'J"V*(@J/p). (5.8) 

As before, we have a flux of kinetic energy, @J/p ,  out along the J-lines. This energy 
flux is directed out of the core of the jet and towards large 1x1, and is the mechanism 
by which momentum diffuses out along the magnetic field lines. (See figure 5.) In 
integral form, (5.8) becomes 

which confirms that energy is continually dissipated as the jet propagates forward. 
More importantly, this global energy equation provides independent confirmation that 
the jet cross-section must elongate in the x-direction. The argument is as follows. First, 
we rewrite (5.6) in the form 

(5.10) 

If the jet were to remain axisymmetric, then the left-hand side of (5.10) would be zero, 
and so the jet would come to a halt within a finite distance (z,,, - 2 7 ~ ~ ) .  This is similar 
to the annihilation of a two-dimensional jet. However, in our case momentum must be 
conserved, and so the jet cannot come to a halt. It follows that some distortion of the 
jet cross-section must occur in order to reduce the dissipation of energy. From (5.5) 
and (5.9) we have 

(5.11) 

Clearly, elongation of the jet cross-section is essential to conserving momentum, 
providing a mechanism for lowering the dissipation. 

Let us now consider the rate at which the jet spreads, and the velocity falls, with z. 
We may rewrite (5.11) in the form 

d 
dz 

while (5.7) gives us 
M - ui Sl, = const. 
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It follows that u, and 1, are of order 

Here, olg is the diffusivity, 
B-lines at the rate of - z2I3 
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(5.12) 

(5.13) 

a2/7. Evidently, the jet cross-section spreads along the 
Notice that the mass flux in the jet also increases with z :  

Q = Ju,dA - (?)‘I3. (5.14) 

Consequently, just as with a conventional viscous jet, there must be some entrainment 
of mass from the far-field, as shown in figure 9. Interestingly, this is precisely the 
opposite of a two-dimensional MHD jet, where mass flows away from the jet. 

We can gain some additional insight into the nature of the flow if we focus on the 
symmetry plane y = 0. Analysis of this flow should capture the spreading of the 
jet cross-section as well as the decline in centreline jet velocity. For large z we have 
1, >> 6, and consequently the axial equation of motion reduces to 

(5.15) 

We expect the transverse lengthscale for u, to be of order 6. In addition, uy is zero on 
the x-axis, so that we may rewrite (5.15) as 

(5.16) 

To appreciate the kinds of flows which satisfy (5.16), consider the simplest case where 
aB is a constant. Then (5.26) has the well-known solution 

3 ~ 2  113 

u, = (-) sech2 [x(48ak z~/M)-”~], 
32a, z 

(5.17) 

where M is now evaluated on the x-axis only. Notice that u, and I ,  scale as predicted. 
Interestingly, if we substitute u for aB, (5.17) becomes the classic solution for a 
conventional viscous, two-dimensional jet (a sheet) emerging from a slit. As with our 
MHD jet, momentum in a viscous jet is conserved, the jet spreads in the x-direction, 
and the mass flux increases with z,  so that the jet entrains fluid from large 1x1. The case 
where ag is not a constant might be thought of as corresponding to a laminar jet of 
variable viscosity. 

We conclude this section by looking at the scaling of the other velocity components. 
As we have three unknowns, uz, uy and u,, we require three governing equations. These 
are furnished by the continuity equation along with any two components of (5.1). We 
shall take the x- and z-components. For large z ,  our three governing equations are 

(5.1 8 a )  

(5.18b) 

v.u=o. (5.1 8 c) 
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Based on the scalings (5.12) and (5.13),  we might anticipate that the components of u 
take the form 

where &-=- Y 
S' 

(5.19~) 

(5.19b) 

(5.19~) 

and F is normalized such that 
r r  

J J F2dXd< = :. 

In fact, it is readily confirmed that equations (5.18) do indeed admit such a similarity 
solution, with the number of independent variables reduced from three to two: 

(5.20 a) 

(5.20h) 

( 5 . 2 0 ~ )  

In addition, in cases where the y-component of velocity is zero, we end up with a 
particularly simple (diffusion-like) equation for F, 

(5.21) 

This is analogous to (4.19) for our transient one-dimensional jet. However, it is 
doubtful that jet flows exist in which uy is zero, particularly when there is a region of 
reverse flow on the y-axis. We are left then with three nonlinear equations for F, G and 
H, which are too complex for exact solutions to be found. Nevertheless, the fact that 
the governing equations do admit solutions of the form (5.19) suggests that, given the 
appropriate boundary conditions, these scalings are valid. 

In summary, we have largely justified the picture given at the beginning of this 
section. There is a close relationship between the spatial development of a steady-state 
jet and the temporal development of its one-dimensional analogue. Reverse flow will 
occur on the y-axis, essentially because the operator V;@2uz/8x2)  induces negative 
forces all along the y-axis, even in regions where u is initially small. Moreover, 
elongation of the jet cross-section is essential to conserving momentum. Without this 
stretching, an overly strong dissipation would annihilate the jet within a finite distance 
of its source. Consequently, the jet develops a long thin sheet-like structure, just like 
those discussed in 94. Finally, I ,  grows at the rate z ~ ~ ~ ,  uz declines as z - ~ ' ~ ,  and the mass 
flux increases with z ,  implying that the jet entrains fluid from the far field. (Since this 
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paper was first submitted, new evidence has been presented which directly supports this 
picture. Physical and numerical experiments have been performed by Harada et al. 
(1994) of just such a flow, clearly indicating spreading of the jet along the field lines, 
as well as the predicted regions of reverse flow.) 

Surprisingly, all of these characteristics have their counterpart in the magnetic 
damping of vortex flows. 

6. Example 3. Damping of axisymmetric vortices 
For our final example, we return to the topic of damped vortices first introduced in 

$3.3. This time, however, we restrict ourselves to axisymmetric flows, as this allows us 
to examine the interaction between damped and undamped components of motion. 

Suppose we have a region of intense swirl, of characteristic radius 6, in an otherwise 
quiescent fluid. Let the axis of rotation be parallel to B and, for simplicity, let the flow 
be axisymmetric. This time we take B to point along the z-axis, as shown in figure 10. 
As with the jet flows we take the Reynolds number to be large and the magnetic 
Reynolds number to be small. However, unlike the jet flows we place no restriction on 
the size of the interaction parameter, N .  

In general, the flow field comprises of two components: the azimuthal velocity, uo, 
and a poloidal recirculation, up. In terms of the angular momentum r, and Stokes 
streamfunction, Y, we have 

u = u,+up = (T/r)e",+V x [(Y/r)&,],  (6.1) 

where 

Since the Lorentz force is linear in u, we may calculate separately the contributions of 
uli and up to F. Consider first the poloidal velocity. Here wo - B is zero and so, from 
(2.5), the corresponding electrostatic potential is also zero. Physically, since the 
induced currents are azimuthal, the current paths automatically close on themselves, 
and so there is no requirement for a potential. It follows from (2.7) that 

Now consider the contribution of uo to F. This time J is poloidal and so we may 
introduce a streamfunction analogous to (4.1) : 

J ,  = (CB) v x [ ( $ / r )  41. 
Ohm's law, in the form of (2.6), then requires 

vz, = -ar/az (6.4) 

and so the azimuthal Lorentz force may be written as 

Note that this azimuthal torque disappears when the axial gradient in r is zero. 
Physically, this arises because, when = T(r), the would-be current n(u, x B) points 
radially outwards and is independent of z. By symmetry, this current has no means of 
recirculating, and so u, x B is exactly balanced by a radial gradient in the potential, 0. 
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FIGURE 10. 
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Magnetic damping of a region of intense swirl: (a) the initial swirl distribution 
(b) the axial diffusion of angular momentum. 

: and 

The azimuthal and poloidal components of Euler's equation now furnishes two 
scalar equations. One is an equation of motion for r, and the other is a vorticity 
transport equation for wo (Davidson 1993). The equation for og contains a familiar 
source term, which is proportional to af /az, and represents a corkscrewing of the 
poloidal vortex lines by the swirl: 

The first of these equations is remarkably similar to (5.3) and (5.4), which govern the 
linear momentum in a jet. It tells us that global angular momentum is conserved, 

(Of course, this is a special case of the more general result established in $3.) It also tells 
us that, when axial gradients in T are small, angular momentum diffuses along the 
magnetic field lines, according to 

This is analogous to the diffusion of linear momentum in our previous examples. The 
mechanism of this diffusion is clear. The term ug x B tends to drive a radial current, 4. 
Near the centre of the vortex, where the axial gradient in r is small, this is counter- 
balanced by an electrostatic potential, @, and so no current flows. However, near the 
top and bottom of the vortex, the current can return through regions of small or zero 
swirl, as shown in figure lO(b). The resulting inward flow of current above and below 



Magnetic damping of jets and vortices 183 

the vortex gives rise to a reversed azimuthal torque which, in turn, creates positive 
angular momentum in previously stagnant regions. Notice also that regions of reverse 
rotation are induced in an annular zone surrounding the initial vortex. Yet again, there 
is a direct analogy with the reverse flow induced by an MHD jet. 

The energy equations corresponding to (6.6) and (6.7) are 

(6.10) 

(6.11) 

The first term on the right of these expressions represents the familiar exchange of 
energy between the swirl and the poloidal motion. It arises because, whenever a region 
of swirl moves radially outward, conserving angular momentum, its energy, E,, falls. 
In the case of an isolated region of swirl, this exchange term represents a transfer of 
energy from the swirl to the recirculation as the fluid centrifuges itself radially outward 
(Davidson 1993). The two terms arising from the Lorentz force are, of course, negative 
and represent Joule dissipation. 

Conservation of I,, in conjuction with the energy equations (6.10) and (6.11), tells 
us a great deal about the evolution of our flow. In particular, if angular momentum is 
conserved, we can bound the kinetic energy from below using a variant of (3.19, 

E >12 2 PdV. (6.12) 

The equality holds if and only if u, represents rigid-body rotation. On the other hand, 
(6.10) and (6.1 1) tell us that energy is continually destroyed as long as J 2  is non-zero. 
But J 2  is zero only when the poloidal recirculation disappears and r i s  independent of 
z. It follows that an arbitrary initial condition must evolve into a steady state of the 
form 

The only restriction is that the initial and final angular momenta must be the same. As 
we shall see, the route which the flow takes to this swirl-only state depends upon the 
magnitude of the interaction parameter, N .  

The energy equations (6.10) and (6.11) also indicate that the Lorentz force 
preferentially dissipates the poloidal motion. If t ,  is the characteristic time scale for up,  
say the turnover time ue-l, then (6.10) and (6.11) give us 

,' .I's 

r = q r ) ;  up = 0.  

dE, - E, Ep  - N + ---. 
dt t ,  

(6.13) 

(6.14) 

The Lorentz force extracts energy from the poloidal recirculation at the rate of E p / r .  
If the swirl flow does not transfer energy to E, rapidly enough (i.e. faster than r-'), then 
any initial poloidal energy will decay as 

Ep - EJO) e-t'r. 

The swirl flow, on the other hand, experiences Joule dissipation at the rate of 
(E@/T)(&/&)~. Just as with the jet flows, the swirl can avoid destruction by stretching 
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i 
Iditial condition Steady state 

FIGURE 11. Magnetic damping of swirl: (u) large interaction parameter; and (b) small 
interaction parameter. 

along the B-lines. Indeed, it must do just this since EB cannot fall below the limit set 
by (6.12). 

The picture is therefore clear. Consider first the case of a large interaction parameter, 
N = t p / 7  9 1. An initial blob of swirl will induce a recirculation via the source term in 
(6.7). This recirculation will tend to centrifuge the angular momentum outward, so that 
En releases energy to the poloidal velocity in accordance with (6.10) and (6.11) 
(Davidson 1993). This occurs on a time scale of t ,  and is the beginning of a Rayleigh- 
like instability. However, the Lorentz force dissipates the recirculation on a time scale 
of 7. Since t ,  + 7, the poloidal velocity cannot grow beyond a value of N-li2u0. In the 
meantime, the energy of the swirl will start to decay through Ohmic dissipation, as 
dictated by (6.13). However, E0 cannot decay beyond the limit set by (6.12), and so 
axial diffusion of T must take place in order that the dissipation is reduced. 
Consequently, angular momentum spreads out along the z-axis, and EB continues to 
fall, until rreaches the boundary, S. This occurs on a time scale o f t  - T(L , , /S )~ ,  where 
L, is the axial length of V.  Ultimately, a steady state is reached, in which the poloidal 
motion is zero and r is a function only of Y. This is illustrated in figure 11 (a).  

When the interaction parameter is small or moderate the situation is somewhat more 
complex. Once again, an initial blob of swirl will tend to centrifuge itself outward, 
releasing energy to the poloidal flow. However, this time 7 9 t , ,  and so the weak 
Lorentz forces do not inhibit the process. The angular momentum will rearrange itself 
into one or more rings which then propagate radially outward. (See figure 11 b.) The 
cross-section of these hoops has a characteristic mushroom-like shape, reminiscent of 
a thermal plume rising from an impulsively heated plate (Davidson 1993). If the 
Lorentz force were zero, then a singularity in T would form at the outer edge of these 
rings (Pumir & Siggia 1992). However, the Joule dissipation will alleviate this to some 
extent, allowing T to diffuse. Ultimately, the angular momentum will centrifuge itself 
to the outer radial boundary. At this point EB ceases to release energy to the poloidal 
recirculation, since u, falls to zero. Ep is then destroyed by the Lorentz force on a 
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timescale of T, and eventually a swirl-only steady state is reached which is quite distinct 
from that corresponding to a large interaction parameter. (Compare figures 1 1  a and 
11 b.) 

In summary, then, there is a qualitative similarity between magnetic damping of 
swirling flow and the braking of a jet. The transport equation for angular momentum 
is essentially the same as that which governs the linear momentum of a jet. Just like 
linear momentum, angular momentum is globally conserved, and diffuses along the B- 
lines. The fact that I, is constant is particularly important, as it guarantees that each 
flow reaches a steady state, in which r is independent of z and up is everywhere zero. 

7. Conclusions 
MHD jets evolving in either space or time conserve momentum but lose energy. 

They achieve this by undergoing a progressive distortion of their cross-section. The jet 
cross-section is elongated along the magnetic field lines, developing a sheet-like 
structure. This lowers the Joule dissipation by forcing longer and longer return paths 
on the induced current. Without this distortion, an overly strong dissipation would 
annihilate the jet within a finite distance (or time), contravening conservation of 
momentum. 

A similar process occurs in the magnetic damping of vortices. Here angular 
momentum is conserved, while the kinetic energy falls monotonically. As with the jet 
flows, the Lorentz force cannot destroy the vortex. Rather, it rearranges the angular 
momentum so as to reduce the global kinetic energy. This process ceases, and a steady 
state is reached, only when the angular momentum is uniform along the B-lines. 

These two examples illustrate the four general principles which control many forms 
of magnetic damping. These are: 

(i) the Lorentz force destroys kinetic energy but does not alter the net linear and 

(ii) the Lorentz force tends to direct the flow in such a way that the relative 

(iii) the reduction in relative dissipation, DIE, is achieved by elongating the flow along 

(iv) the spreading of momentum and vorticity along the field lines is essentially a 

angular momentum of the fluid ; 

dissipation, DIE, continually fall; 

the B-lines; 

diffusive process, with a diffusivity of 62/7. 
This last point is familiar in the context of MHD turbulence. 
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